

Fig. 2. Comparison of the Transverse and Longitudinal Modes in NaF with and without Pressure.

LiF. A similar analysis was made for KBr and in this crystal the "self-energy" shift is negligible. A similar result was obtained for RbI using other techniques.²²,²⁶

The results obtained for the Grüneisen parameters for the longwavelength optical modes from equation 1 and equation 2,

$$\gamma_{j}(k) = \frac{\partial \ln v_{j}(k)}{\partial \ln V}$$
 (2)

are tabulated in Table IV. The agreement with the calculations made from those assuming a rigid-ion model with central forces incorporating repulsion terms of the Born-Mayer $[\exp(-r/p)]$ and inverse-power (r^{-n}) type agree well. The results using Cowley's theory give somewhat larger values of γ .

TABLE IV

Gruneisen Parameters for the Long Wavelength Optical Mo

2.95

2.92

3.27

l from Eq. 2	Born-Mayer ²⁷	Calculated r ⁻ⁿ repulsion Cowley 29	[
2.59	2.44	3.46	
2.95	2.43	3.00	

2.52

2.52

2.83

2.46